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Resul ts  of invest igat ions a r e  p r o c e s s e d  in the f o r m  of dependences for  the Nussel t  number  
at the s tagnat ion point taking account of f r e e - s t r e a m  pulsa t ions .  The exper imen t s  a r e  
compared  with a computat ion by an approx imate  method [8]. 

Resul ts  of the exper imenta l  invest igat ions of heat fluxes f r o m  a jet  to no rma l ly  d isposed flat  obs tac les  
outside the dependence on the jet  p a r a m e t e r s  in a nozzle  exit sect ion [1'4] differ  s ignif icantly f r o m  the 
computed magnitudes of the heat f luxes computed by means  of known dependences for  a un i form s t r e a m  in 
the neighborhood of the s tagnat ion point [5]. La rge  d i sc repanc ies  between theory and exper iment  cannot 
be explained by inaccurac ies  in the computat ion but a r e  a s soc ia ted  with the known s ingular i ty  of jet  flows, 
namely ,  with the pulsat ions (turbulence) of the gas  dynamic p a r a m e t e r s  of the jet s t r e a m .  

The influence of the turbulence of a subsonic a x i s y m m e t r i c  cold jet  on the heat exchange with a hot 
flat obstacle  disposed along the no rm a l  to the jet  axis is invest igated here in .  Because  of the compexi ty  of 
the p r o b l e m  posed and the lack of a sufficient quantity of data pe rmi t t ing  assoc ia t ion  of the pulsat ion c h a r -  
a c t e r i s t i c s  of a jet s t r e a m  with p a r a m e t e r s  ave raged  with r e spec t  to t ime,  we decided to gather  e x p e r i m e n -  

t a l  r e su l t s  on jet  turbulence c h a r a c t e r i s t i c s  near  obs tac les  and to find an empi r i ca l  re la t ion  between these 
l a t t e r  and the magnitudes of the heat fluxes f r o m  the jet  to the obs tac le  in d i rec t  p rox imi ty  to the stagnation 
point .  

The invest igat ion was conducted on an exper imen ta l  appara tus  consis t ing of a wind tunnel, a flat  ob-  
s tac le  with a mounted hea te r ,  a coordinate  appara tus  and measur ing  unit.  The obstacle  was a 300 • 200 
• 10 m m T e x t o l i t e  s lab on which 0.1 m m  thick tape heating e lements  we re  glued. C h r o m e l - C o p e l  t h e r m o -  
couples f r o m  0.1 m m  d iame te r  wi re  were  fas tened to the inner su r face  of the e lement .  P r i o r  to fabr ica t ion  
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Fig .  1. Dis t r ibut ion of the h e a t - t r a n s f e r  coefficient  over  the ob-  
s tac le  (u a = 21 m / s e c ,  d a = 100 m m ,  ~ in W / m  2 .deg): 1) .X = 0.5; 2) 
1.0; 3) 2.0; 4) 3.0; 5) 4.0; 6) 5.0. 

F i g . 2 .  Dis t r ibut ion of the t i m e - a v e r a g e d  veloci t ies  over  the ob-  
s tac le  (u a = 8 m / s e c ,  d a = 100 ram): 1) .X = 0.5; 2) ~: = 2.0. 
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F ig .  3. Distr ibut ion of the r o o t - m e a n - s q u a r e  veloci ty pulsat ions over  the obs tac le  (u a 
= 8 m / s e c ,  d a - 100 ram): 1) X = 1.0; 2) 2.0; 3) 3.0; 4) 4.0; 5) 5.0. 

F ig .  4. Dependence of the number  Nu at the stagnation point on the number  Re: 1) 
computat ion f r o m  [5]; 2) f r o m  [3]; 3) f r o m  [8]; 4-6) exper iment ;  4) -~ = 0.5, e = 2.6%; 
5) r e spec t ive ly  2.0, 3.5; 6) 5.0, 6.5. 

of the junction, the measur ing  ends of the thermocouple  were  f lat tened to th icknesses  on the o rde r  of 2 0 / z  
To e l iminate  any e lec t r i ca l  contact between the thermocouple  and the heating e lement ,  mica  s p a c e r s  about 
10 ~ thick were  used.  The  thermocouple  was ca l ibra ted  against  a s tandard m e r c u r y  t h e r m o m e t e r  p r i o r  to 
each s e r i e s  of expe r imen t s .  The t i m e - a v e r a g e d  and pulsat ion cha rac t e r i s t i c s  (velocities) we re  measu red  
by  using a s tandard  dc ho t -wi re  a n e m o m e t e r .  

Under s t a t ionary  heat exchange conditions, by neglecting radiat ion because  of the sma l lnes s  of the 
wall  t e m p e r a t u r e ,  the t h e r m a l  in teract ion between the jet and the hot plate is de te rmined  f r o m  the heat b a l -  
ance  condition 

Qel~c = Qw § qlos~, (1) 

where  Qelec = IU is the heat l ibe ra ted  in the plate  because  of the pas sage  of the e lec t r ic  cur rent ;  Qw is the 
heat  flux r emove d  by the gas;  Qloss  is the heat l o s ses  in the Textolite.  The following express ion  for  the 
heat t r a n s f e r  coefficient 

IU Tw --T~, m 

= , (2) 
T~ - -  T e 

follows f r o m  (1), where  S is the su r face  of the heated plate; h is the thickness  of the Textoli te obstacle ;  Tam 
is  the t e m p e r a t u r e  of the ambient  medium; T e is the r e c o v e r y  t e m p e r a t u r e  (determined exper imenta l ly  
under  the act ion of a jet  on the obs tac le  with disconnected heating element ,  I = 0). 

An invest igat ion of the flow field nea r  the obs tac le  and the t he rma l  effect was c a r r i e d  out on the initial  
por t ion  of the jet  in the range  of var ia t ion  between the nozzle exit and the obs tac le  .~ = X/d  a = 0.5-5.0.  The 
d i ame te r  (da) of the nozzle  exit sect ion va r i ed  between 10-100 ram,  the s t r e a m  veloci ty  (Ua) at the nozzle 
exit  va r i ed  between 10-300 m / s e c ,  and the Reynolds number  calculated by means  of the nozzle  exit p a r a m -  
e t e r s  we re  in the range  Re = 104-2 �9 105, 

Typica l  dis t r ibut ion prof i les  of the local  heat t r an s f e r  coefficients (~ over  the obs tac le  su r face  a r e  
p re sen ted  in Fig.  1 for  different  ranges  X between the nozzle  exit and the obstacle ,  f r o m  which it follows 
that the dis t r ibut ion prof i le  of the heat t r a n s f e r  coefficient  typical  for  the in teract ion between a comple te ly  
developed turbulent  jet  and an obs tac le  for  the * range  cons idered  (see [6], for  example)  does not change 
only for  l a rge  values of .~. Fo r  X = 5, the heat t r a n s f e r  coefficient  is_pract ical ly  constant in di rect  p r o x -  
imi ty  to the stagnation point (~ = 0) and then diminishes  un i formly  as r i n c r e a s e s .  Fo r  shor t  ranges  between 
the nozzle  exit  and the obstacle ,  the o~ dis t r ibut ion curve  has a min imum at the stagnation point.  A number  
of pape r s  invest igat ing the heat exchange between a x i s y m m e t r i c  [1] o r p l a n e  jets  [2] and no rma l ly  disposed 
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obs tac les  r epo r t  on the exis tence  of a min imum value of a at the stagnation point for  sma l l  ranges  between 
the nozzle  exit and the obs tac le .  According to [2], this min imum exis ts  at .X < 0.5 for  plane je ts .  As the 
r e su l t s  of the invest igat ions conducted show, in the case  of an a x i s y m m e t r i c  jet  the range -X of exis tence  of 
min imum a at the stagnation point is broadened and reaches  to .X = 3. 

The dis tr ibut ion of the heat t r a n s f e r  coefficient  w over  the obs tac le  su r face  for  ~: -<. 1.0 is c h a r a c -  
t e r i zed  by the p r e s e n c e  of two m ax i m um s  fa r  f r o m  the stagnation point: cent ra l ly  at a spacing r = 0.8 f r o m  
the s tagnat ion point and pe r iphe ra l ly  at r = 2.5. As the r e su l t s  of invest igat ions of the t i m e - a v e r a g e d  v e -  
loci ty dis t r ibut ions over  the obs tac le  su r face  show (Fig.2),  for  -X -< 1.0 the cent ra l  heat flux max imu m c o r -  
responds  approx ima te ly  to the locat ion of the max imum in the gradient  of the mean s t r e a m  veloci ty  with 
r e s p e c t  to t ime ,  i .e . ,  the appearance  of a cent ra l  m a x i m u m  can be explained by the nonuniformity of the ve -  
loci ty  dis t r ibut ion over  the obs tac le  su r face .  In the domain of jet  rotat ion on the obs tac le ,  for  r > 1.0 the 
jet  mixing zone with the ambient  medium e m e r g e s  on the obstacle  su r face ,  which signif icantly i nc rea se s  
the intensi ty of jet  s t r e a m  turbulence in the nea r -wa l l  domain,  and hence resu l t s  in the appearance  of the 
pe r iphe ra l  heat flux m ax i m um .  As the r e su l t s  of measur ing  the s t r e a m  velocit_~pulsations in the nea r -wa l l  
domain (Fig. 3) show, the r o o t - m e a n - s q u a r e  value of the veloci ty  pulsat ions ,/(u'Z> approx imate ly  equals 
the veloci ty  pulsat ion in cor responding  sect ions of a f r ee  jet [7]. 

An inc rea se  in the heat flux at the stagnation point and the d i sappearance  of the cent ra l  and pe r iphe ra l  
m a x i m u m s  in c~ as  X i n c r e a s e s  a r e  explained by the i nc r ea se  in turbulence intensi ty on the jet  axis  for  .X 
> 4.0. This  r e su l t s  in m e a s u r e d  high values of the heat flux at the stagnation point with a m a x i m u m  c o r r e -  
sponding to the t rans i t ion  sect ion of the jet .X ~ 8. 

Resul t s  of an exper imenta l  invest igat ion of the heat flux at the stagnation point a r e  p resen ted  in Fig.  
4 in e r i t e r i a l  f o r m .  Taking account of the exper imenta l  r e su l t s  on the magnitude of the turbulent  s t r e a m  
intensi ty in the neighborhood of the s tagnat ion point which were  obtained for  the s a m e  s t r e a m  p a r a m e t e r s  
at  the nozzle  exit ,  the c r i t e r i a l  dependence of the heat exchange at the stagnation point is descr ibed  with 
sufficient  a c c u r a c y  by the following empi r i ca l  formula :  

Nua = 0.8 Pr ~ Re~ 5 X -o.os (1 + 0.8e'" Re~ (3) 

where  Nua = Ctda/X , Re a = uada/V; ~ = ~/<u'2>//Ua>. 

The  r e su l t s  of a computat ion using (3) ag ree  well  with the r e su l t s  of the approx imate  solution e luc i -  
dated in [8]. F o r  e = 0 fo rmula  (3) yields  r e su l t s  which ag ree  with the computation of Nua at the stagnation 
point for  a uni form s t r e a m  impinging on an obs tac le  [5]. 
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2 = X/da; 
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NOTATION 

is the dis tance along the obstacle  to the stagnation point; 
is the dis tance f r o m  the nozzle exit to the obstacle;  

is the d i ame te r  of the nozzle  exit section; 
is the obs tac le  th ickness;  
is the velocity;  
is the t empe ra tu r e ;  
a r e  the Nussel t ,  Reynolds ,  and Prandt l  numbers ;  
m the heat t r a n s f e r  coefficient;  
is the heat conduction coefficient;  
is the k inemat ic  v iscosi ty ;  
ts the turbulence intensity;  
m the voltage drop on the plate;  
is the cur ren t  intensi ty flowing over  the plate;  
is the plate  su r face .  

S u b s c r i p t s  

a is the nozzle  section; 
w is the wall; 
T is Textol i te ;  
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am is the ambient medium; 
e is the recovery parameters .  
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